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Plants use diffuse light more efficiently than direct light, which is well established due to
diffuse light penetrates deeper into the canopy and photosynthetic rate of a single leaf
shows a non-linear response to the light flux density. Diffuse light also results in a more
even horizontal and temporal light distribution in the canopy, which plays substantial
role for crop photosynthesis enhancement as well as production improvement. Here we
show some of the recent findings about the effect of diffuse light on light distribution
over the canopy and its direct and indirect effects on crop photosynthesis and plant
growth, and suggest some perspectives for further research which could strengthen the
scientific understanding of diffuse light modulate plant processes and its application in
horticultural production.
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Introduction

Solar light is composed of a diffuse and a direct component. Diffuse light arises from the scattering
of light by molecules or larger particles in the atmosphere and comes from many directions
simultaneously; direct light arrives in a straight line from the sun without being scattered (Iqbal,
1983). Plants use diffuse light more efficiently than direct light (Gu et al., 2002; Farquhar and
Roderick, 2003; Gu et al., 2003; Alton et al., 2007; Mercado et al., 2009; Li et al., 2014a), it arises
due to diffuse light creates a more homogeneous light profile in the canopy than direct light.
Photosynthetic rate of a single leaf shows a nonlinear response to the light flux density (Marshall
and Biscoe, 1980). High light level usually leads to photosynthetic saturation and decrease in light
use efficiency (LUE), which often occur under direct light condition. Therefore, the direct light
usually wastes photons by concentrating the light resource to only a fraction of all leaves, leading to
a less efficient photosynthetic use of light by plant canopies (Gu et al., 2002). Diffuse light, however,
effectively avoids the light saturation constraint by more evenly distributing light among all leaves
in plant canopies, and leads to a more efficient use of light (Gu et al., 2002).

To investigate the effect of diffuse light on plant processes, many studies have been carried out
by comparing plant responses on cloudy and clear days (Zhang et al., 2011; Urban et al., 2012); or
by comparing the aftermath of volcanic and anthropogenic emissions (Gu et al., 2003; Mercado
et al., 2009). Such type research implies not only a difference in the fraction of diffuse light, but also
large differences in light intensity, and the subsequent changes in microclimatic parameters such
as air and soil temperature, and vapour pressure deficit (VPD). These changes directly or indirectly
influence plant processes. Recently diffuse glass has become available that increases the diffuseness
of light without affecting light transmission in the greenhouse (Hemming et al., 2007, 2008, 2014).
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Studies have reported that such cover materials have a remarkable
effect on plant growth and production (Hemming et al., 2007;
Li et al., 2014a,b). Thus, the occurrence of diffuse glass not
only provide a promising measure for improving horticultural
production, but also offers an opportunity to explicitly explore
the pure effects of diffuse light on light distribution over the
canopy and its direct and indirect effects on crop photosynthesis
and plant growth. In this review, we will discuss the effect of
diffuse light on plant processes and its application in horticultural
production, and subsequently point out the perspectives for
further research.

Diffusing the Incident Light Improves
Spatial Light Distribution

Crop photosynthesis to a large extent correlates with the light
profile within the canopy (González-Real et al., 2007; Niinemets,
2007; Sarlikioti et al., 2011a). In the vertical profile of the
canopy, light intensity decreases exponentially from top to the
bottom of the canopy, as described by the Beer-Lambert–Bouguer
law (Chandrasekhar, 1950; Monsi and Saeki, 2005) of which
light extinction coefficient can be used to quantify the vertical
light distribution in the canopy. Diffuse light exhibits a lower
extinction coefficient than direct light (Urban et al., 2012; Li
et al., 2014a) although the effect depends on solar position
(Morris, 1989). This indicates diffuse light penetrates deeper
into the crop canopy. Such phenomenon occurred due to the
properties of diffuse light that scatters in many directions and
thus causes less shadow, while direct light either concentrates
in a beam or casts a shadow in the canopy, which results in
the upper leaves being brightly illuminated and lower leaves in
deep shade, or strong sunflecks at a given canopy depth. In
the horizontal profile of the canopy, diffuse light also results
in a more homogeneous light distribution due to less sunflecks
occur (Acock et al., 1970; Li et al., 2014a), which plays the
most important role for crop photosynthesis enhancement under
diffuse light (Li et al., 2014a). A general impression of light
distribution in the canopy under direct as well as diffuse
light condition has been given in Figure 1. Apart from light
distribution, diffuse light also resulted in a lower leaf temperature
and less photoinhibition of top leaves (Urban et al., 2012;
Li et al., 2014a), which are correlated with the lower light
absorption of the top leaves as well as fewer local peaks in light
intensity occur under diffuse light, these are also benefit for crop
photosynthesis.

Physiological and morphological properties of plant organs
can be affected by their prevailing growth microclimate (Sultan,
2000; Niinemets, 2007). A homogeneous light distribution
within the crop canopy under diffuse light gives rise to
the question whether plant physiological and morphological
acclimation occurs. Diffuse light penetrates deeper into the
canopy; thus, the lower positioned leaves receive on average
a higher light intensity which leads to a higher total nitrogen
and chlorophyll content in the canopy, and consequently results
in a higher leaf photosynthetic capacity in the lower of the
canopy (Li et al., 2014a). Acclimation to diffuse light also includes

FIGURE 1 | Light distribution in tomato canopy in the conventional
clear glasshouse (direct light, A) and diffuse glasshouse (diffuse light,
B) on a clear day. Light is more homogeneously distributed under diffuse
light (B) compared with direct light (A) where many sunflecks in the middle
and lower of the canopy. The photo was taken in Wageningen UR
Greenhouse Horticulture, Bleiswijk.

acclimation of leaf morphology, which affects light interception
and, consequently, photosynthesis (Pearcy et al., 2005). Li et al.
(2014a) reported that tomato plants grown under diffuse light
showed a lower specific leaf area (SLA) which indicates a
thicker leaves, as well as a higher leaf area index (LAI) which
mainly caused by a greater leaf width. A higher LAI is highly
relevant for crop photosynthesis, as long as the fraction of
light interception is also increased. For the mature crop under
greenhouse condition, which often has a closed canopy, thus,
the increased LAI under diffuse light has limited effect on
canopy light interception and photosynthesis for mature crop
(Li et al., 2014a).

Diffusing the Incident Light Lessens the
Variation of Temporal Light Distribution
in the Canopy

In nature, temporal light distribution in the canopy is
characterized by alternating periods of relatively high light
followed by periods of background low light at a given point
(sunflecks). Under these circumstances, a large fraction of CO2
assimilation may occur under transient light conditions. Stomata
regulate carbon uptake of a leaf. In response to fluctuating light,
stomata exhibit a dynamic response that is slower than the
response of photosynthesis and fluctuating light itself, which may
limit the CO2 assimilation under fluctuating light conditions
(Pearcy et al., 2004; Lawson and Blatt, 2014). In greenhouses,
the shadow and sunflecks generated by overstory leaves, leaf
movement, greenhouse construction parts as well as equipment
may exacerbate the variation of temporal light distribution.
This may substantially limit crop photosynthesis compared to
constant light intensities (Pearcy, 1990; Way and Pearcy, 2012).
This variation in light intensity can be minimized when the
incident light is made diffuse, which would consequently lead to
less limitation on leaf photosynthesis, thus improving the canopy
LUE (Li et al., 2014b).
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Stomatal responses to dynamic light vary dramatically among
species, from virtually no response to rapid stomatal responses,
thereby resulting in different consequences for instantaneous leaf
photosynthesis (Knapp and Smith, 1990; Vico et al., 2011), which
may subsequently modulate the effect of diffuse light on canopy
LUE. Li (2015) have tested the responses of two anthurium
cultivars which have distinct stomatal properties to diffuse light.
In cultivars where stomata respond strongly to fluctuations of
photosynthetic photon flux density (PPFD), transient rates of
photosynthesis and subsequently LUE increased under diffuse
light in which stomatal conductance becomes relatively constant
and less limiting for photosynthesis. For cultivars with relatively
insensitive stomata to the fluctuations of PPFD, the effect of
the homogeneous temporal distribution of PPFD on LUE was
non-existing. In this context, additional to benefits of diffuse
light associated with improved spatial light distribution, the
stimulating effect of diffuse light on crop LUE can also depend on
the dynamic response of stomatal conductance to incident PPFD
at leaf level.

Allowing More Light via Diffuse Cover
Materials Stimulates Growth of
Shade-Tolerant Pot Plants without
Compromising Plant Quality

Even in northern countries, there are periods in summer with
too high light levels for many shade-tolerant pot plants such as
anthurium, bromeliads, and orchids. When excessive light energy
is being absorbed by the light harvesting antennae at a rate which
surpasses the capacity for photochemical and non-photochemical
energy dissipation, this may lead to photoinhibition or photo-
damage (Long and Humphries, 1994). In the long term, this
could result in discoloring of leaves or even necrosis. Light
damage occurs mostly as a result of prolonged exposure to
excessive peaks in light intensity (Asada, 1999; Niyogi, 1999;
Kasahara et al., 2002). Consequently, growers regularly apply
shading in commercial production of many shade-tolerant pot
plants in summer by closing a screen or having white wash
on the greenhouse cover. However, shading often carries a
penalty on potential crop growth as it is positively related to
the amount of light that can be captured, which consequently
reduces the LUE in the greenhouse production systems. When
diffusing the incident light through cover materials, light in
the greenhouse is more homogeneously distributed with less
sunflecks, which decreases the extent of photoinhibition as well
as local peaks in leaf temperature when global radiation is
high (Li et al., 2014a). Therefore, the problem of discoloring of
leaves or necrosis in shade-tolerant pot plants under relatively
high light could be less when cultivated under diffuse light
condition (Li et al., 2014b). Studies have suggested that increasing
daily light integral under diffuse light not only accelerates plant
growth but also improves plant ornamental quality with more
compact plants (Li et al., 2014b; Marcelis et al., 2014). This
may substantially contribute to the improvement of horticultural
production.

Perspectives for Further Research

Obviously, diffuse light has great advantageous for plant growth.
However, detailed studies about the following aspects that closely
related with diffuse light are lacking. Further exploring these
aspects will strengthen the scientific understanding of diffuse
light modulate plant processes as well as its application for crop
production.

(a) The effects of diffuse light on crop photosynthesis could
strongly differ between winter and summer light conditions.
In winter, photosynthesis of the upper leaves is far from light
saturation. With the same light intensity at leaf level, upper
leaves have a higher rate of photosynthesis than lower leaves.
Therefore, deeper penetration of light may have less effect
on crop photosynthesis in winter (Sarlikioti et al., 2011b).
Furthermore, light interception follows a seasonal pattern
with on average, a lower fraction of light intercepted during
summer than during winter because of changes in solar
elevation (Sarlikioti et al., 2011a). The higher solar elevation
in summer months results in an orientation of light rays
more perpendicular to the plant canopy, resulting in a higher
light penetration and lower interception. Therefore, seasonal
variation of light intensity, directional light quality (diffuse
or direct light) as well as solar position should be considered
when exploring the effect of diffuse light on light distribution
and crop photosynthesis.

(b) Measuring leaf photosynthesis is the basis for estimating
canopy photosynthesis. Conventionally, only the adaxial side
of the leaf is illuminated by the light source when measuring
single leaf photosynthesis, this might result in minor error
in estimating the canopy photosynthesis under diffuse light.
This is because diffuseness of light may affect the fraction
of light on the abaxial leaf surface, while the abaxial surface
have a different photosynthesis light response curve than
adaxial surface (Paradiso and Marcelis, 2012). Therefore,
measurements of light absorption and photosynthesis light
response curves on both the adaxial and abaxial side of leaves
in the canopy in combination with functional–structural
plant modeling might help to estimate these effects.

(c) Row crop systems are commonly used in horticultural and
agronomic crops. This system facilitates crop management
and allows higher light penetration inside the plant canopy.
In this system, a fraction of light reaches the ground floor in
the middle of the path (Stewart et al., 2003; Sarlikioti et al.,
2011a), the reflection of light by the floor can be reused for
photosynthesis. Furthermore, row orientation substantially
affects canopy light interception (Borger et al., 2010; Sarlikioti
et al., 2011a). These effects may differ between diffuse and
direct light conditions.

(d) Light distribution and absorption is highly dependent on
crop architecture (Falster and Westoby, 2003; Zheng et al.,
2008; Sarlikioti et al., 2011b). Short and compact canopies
may generate substantial leaf overlap and self-shading,
therefore decreases the net amount of leaf area exposed
to light, and consequently affect canopy light interception
(Falster andWestoby, 2003). Plants also vary widely in leaf
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angle, leaf orientation, internode length, and leaf length
to width ratio, these traits have a direct effect on light
absorption and photosynthesis (Falster and Westoby, 2003;
Sarlikioti et al., 2011b). However, detailed research about
plant architecture modulates the effect of diffuse light on
light distribution and canopy photosynthesis are lacking.
Furthermore, LAI is a predominant factor for canopy light
interception, at low LAI mutual shading of leaves within the
canopy is small, thus light may readily penetrate deeper into
the canopy, which probably decrease the potential effect of
diffuse light.

(e) Fruit and vegetable quality is closely correlated with
the pre-harvest growth condition. In open field and
conventional clear greenhouses, fruit and vegetables often
experience diurnal fluctuations or long-term exposure to
direct sunlight, with associated high tissue temperatures.
This may result in harvest disorders (i.e., sunburn),
and heterogeneity of internal quality properties such as
sugar content, tissue firmness, mineral content (Woolf
and Ferguson, 2000). Fruit with different temperature
histories will also respond differently to postharvest low
temperatures (i.e., chilling injury) (Ferguson et al., 1999).
The quality problems induced by sunlight exposure could
be reduced if plants were grown under diffuse light where
less fluctuations in temperature and light intensity occurs,
detailed research in this aspect has not been reported
so far.

Conclusion

Diffuse light improves spatial light distribution in the crop
canopy, thereby stimulating crop photosynthesis; the more
uniform horizontal light distribution within the canopy plays
the most important role for this effect. Diffuse light also lessens
the variation of the temporal light distribution at any specific
point in the canopy. However, its effect on plant growth
depends on the dynamic responses of stomatal conductance
to the incident light. Apart from the homogeneous light
distribution, diffusing the incident light makes it possible to
allow more light in the greenhouse which strongly stimulates
crop growth of shade-tolerant pot plants without compromising
plant quality. Although the available knowledge have clearly
stated the advantageous of diffuse light for crop production,
incorporating the seasonal light condition and solar position,
plant architecture, crop management practices as well as the
post-harvest product quality for further research will strengthen
our understanding of the effect of diffuse light on plant
processes.
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